Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.954
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10942, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740839

RESUMO

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Assuntos
Anti-Infecciosos , RNA Ribossômico 16S , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , RNA Ribossômico 16S/genética , Testes de Sensibilidade Microbiana , Filogenia , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Animais , Tailândia , Células Vero , Musa/microbiologia , Plasmodium falciparum/efeitos dos fármacos , Chlorocebus aethiops
2.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38696111

RESUMO

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Assuntos
Antimaláricos , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Plasmodium falciparum , Prata , Terminalia , Prata/química , Prata/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Nanopartículas Metálicas/química , Terminalia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Humanos
3.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739798

RESUMO

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Assuntos
Peptídeos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina Tiolesterase , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/farmacologia , Antimaláricos/química , Ubiquitina/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico
4.
mBio ; 15(5): e0285023, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564676

RESUMO

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos , Plasmodium falciparum , Proteínas de Protozoários , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Humanos
5.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Assuntos
Eritrócitos , Plasmodium falciparum , Polissacarídeos , Proteínas de Protozoários , Humanos , Antígenos de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673995

RESUMO

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Assuntos
Inibidores de Cisteína Proteinase , Nitrilas , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Inibidores de Cisteína Proteinase/química , Malária/tratamento farmacológico , Nitrilas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
7.
Malar J ; 23(1): 92, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570791

RESUMO

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Prevalência , Togo/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Biomarcadores , Combinação de Medicamentos , Plasmodium falciparum/genética
8.
Front Cell Infect Microbiol ; 14: 1304839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572319

RESUMO

Background: Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods: Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results: We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions: We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.


Assuntos
Antimaláricos , Babesia , Babesiose , Malária Falciparum , Malária , Parasitos , Plasmodium , Animais , Humanos , Babesiose/tratamento farmacológico , Malária/parasitologia , Eritrócitos/parasitologia , Antimaláricos/farmacologia , Plasmodium falciparum
9.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675640

RESUMO

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Assuntos
Chalconas , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Humanos , Linhagem Celular Tumoral , Plasmodium falciparum/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
10.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677112

RESUMO

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Assuntos
Antimaláricos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Harmina , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Harmina/farmacologia , Harmina/química , Harmina/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Testes de Sensibilidade Parasitária
11.
J Infect ; 88(5): 106144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574776

RESUMO

OBJECTIVE: The effectiveness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is threatened by increasing SP-resistance in Africa. We assessed the level of SP-resistance markers, and the clinical and parasitological effectiveness of IPTp-SP in southern Mozambique. METHODS: P. falciparum infection, antimalarial antibodies and dhfr/dhps SP-resistance mutants were detected by quantitative polymerase chain reaction (qPCR), suspension array technology and targeted deep sequencing, respectively, among 4016 HIV-negative women in Maputo province (2016-2019). Univariate and multivariate regression models were used to assess the association between taking the recommended three or more IPTp-SP doses (IPTp3+) and parasitological and clinical outcomes. RESULTS: 84.3% (3385/4016) women received three or more IPTp-SP doses. The prevalence of quintuple mutants at first antenatal care (ANC) visit was 94.2%. IPTp3+ was associated with a higher clearance rate of qPCR-detected infections from first ANC visit to delivery (adjusted odds ratio [aOR]=5.9, 95% CI: 1.5-33.3; p = 0.012), lower seroprevalence at delivery of antibodies against the pregnancy-specific antigen VAR2CSADBL34 (aOR=0.72, 95% CI: 0.54-0.95; p = 0.022), and lower prevalence of low birth weight deliveries (aOR: 0.61, 95% CI: 0.41-0.90; p = 0.013). CONCLUSION: A sustained parasitological effect of IPTp-SP contributes to the clinical effectiveness of IPTp3+ in areas with high prevalence of SP-resistance markers.


Assuntos
Antimaláricos , Combinação de Medicamentos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Humanos , Feminino , Sulfadoxina/uso terapêutico , Sulfadoxina/administração & dosagem , Pirimetamina/uso terapêutico , Pirimetamina/administração & dosagem , Gravidez , Antimaláricos/uso terapêutico , Adulto , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Moçambique/epidemiologia , Adulto Jovem , Complicações Parasitárias na Gravidez/prevenção & controle , Complicações Parasitárias na Gravidez/tratamento farmacológico , Adolescente , Quimioprevenção/métodos
12.
Vaccine ; 42(12): 3066-3074, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584058

RESUMO

BACKGROUND: To improve the efficacy of Plasmodium falciparum malaria vaccine RTS,S/AS02, we conducted a study in 2001 in healthy, malaria-naïve adults administered RTS,S/AS02 in combination with FMP1, a recombinant merozoite surface-protein-1, C-terminal 42kD fragment. METHODS: A double-blind Phase I/IIa study randomized N = 60 subjects 1:1:1:1 to one of four groups, N = 15/group, to evaluate safety, immunogenicity, and efficacy of intra-deltoid half-doses of RTS,S/AS02 and FMP1/AS02 administered in the contralateral (RTS,S + FMP1-separate) or same (RTS,S + FMP1-same) sites, or FMP1/AS02 alone (FMP1-alone), or RTS,S/AS02 alone (RTS,S-alone) on a 0-, 1-, 3-month schedule. Subjects receiving three doses of vaccine and non-immunized controls (N = 11) were infected with homologous P. falciparum 3D7 sporozoites by Controlled Human Malaria Infection (CHMI). RESULTS: Subjects in all vaccination groups experienced mostly mild or moderate local and general adverse events that resolved within eight days. Anti-circumsporozoite antibody levels were lower when FMP1 and RTS,S were co-administered at the same site (35.0 µg/mL: 95 % CI 20.3-63), versus separate arms (57.4 µg/mL: 95 % CI 32.3-102) or RTS,S alone (62.0 µg/mL: 95 % CI: 37.8-101.8). RTS,S-specific lymphoproliferative responses and ex vivo ELISpot CSP-specific interferon-gamma (IFN-γ) responses were indistinguishable among groups receiving RTS,S/AS02. There was no difference in antibody to FMP1 among groups receiving FMP1/AS02. After CHMI, groups immunized with a RTS,S-containing regimen had âˆ¼ 30 % sterile protection against parasitemia, and equivalent delays in time-to-parasitemia. The FMP1/AS02 alone group showed no sterile immunity or delay in parasitemia. CONCLUSION: Co-administration of RTS,S and FMP1/AS02 reduced anti-RTS,S antibody, but did not affect tolerability, cellular immunity, or efficacy in a stringent CHMI model. Absence of efficacy or delay of patency in the sporozoite challenge model in the FMP1/AS02 group did not rule out efficacy of FMP1/AS02 in an endemic population. However, a Phase IIb trial of FMP1/AS02 in children in malaria-endemic Kenya did not demonstrate efficacy against natural infection. CLINICALTRIALS: gov identifier: NCT01556945.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Criança , Humanos , Adjuvantes Imunológicos , Anticorpos Antiprotozoários , Antígenos de Protozoários , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Proteína 1 de Superfície de Merozoito , Parasitemia , Plasmodium falciparum , Proteínas de Protozoários , Método Duplo-Cego
13.
ACS Infect Dis ; 10(4): 1185-1200, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38499199

RESUMO

New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Íons/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/metabolismo
14.
Antimicrob Agents Chemother ; 68(5): e0169023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501806

RESUMO

Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.


Assuntos
Trifosfato de Adenosina , Antimaláricos , Transferência Ressonante de Energia de Fluorescência , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Trifosfato de Adenosina/metabolismo , Antimaláricos/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Quinina/farmacologia , Doxiciclina/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Concentração de Íons de Hidrogênio
15.
EMBO Mol Med ; 16(4): 723-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514791

RESUMO

Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Camundongos , Plasmodium falciparum/genética , Malária Falciparum/prevenção & controle , Deleção de Genes , Vacinas Antimaláricas/genética , Vacinas Atenuadas/genética , Esporozoítos/genética
16.
Int J Biol Macromol ; 265(Pt 1): 130420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460641

RESUMO

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.


Assuntos
Cisteína Endopeptidases , Plasmodium falciparum , Dobramento de Proteína
17.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543034

RESUMO

The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite's food vacuoles, our approach is summarized as "to dig its grave with its fork". However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity.


Assuntos
Antimaláricos , Citostáticos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Citostáticos/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Peptídeos/farmacologia , Peptídeos/uso terapêutico
18.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503166

RESUMO

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Subtilisina/metabolismo , Sequência de Aminoácidos , Plasmodium falciparum/metabolismo , Peptídeos , Malária Falciparum/parasitologia , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Antimaláricos/farmacologia , Antimaláricos/química , Proteínas de Protozoários , Mamíferos/metabolismo
19.
Int J Parasitol Drugs Drug Resist ; 24: 100532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520842

RESUMO

Artemether-lumefantrine (AL) is the most widely used antimalarial drug for treating uncomplicated falciparum malaria. This study evaluated whether the K65Q mutation in the Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) gene was associated with alternated susceptibility to lumefantrine using clinical parasite samples from Ghana and the China-Myanmar border area. Parasite isolates from the China-Myanmar border had significantly higher IC50 values to lumefantrine than parasites from Ghana. In addition, the K65 allele was significantly more prevalent in the Ghanaian parasites (34.5%) than in the China-Myanmar border samples (6.8%). However, no difference was observed in the lumefantrine IC50 value between the Pfnfs1 reference K65 allele and the non reference 65Q allele in parasites from the two regions. These data suggest that the Pfnfs1 K65Q mutation may not be a reliable marker for reduced susceptibility to lumefantrine.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Combinação Arteméter e Lumefantrina/uso terapêutico , Gana , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Resistência a Medicamentos/genética
20.
Am J Trop Med Hyg ; 110(5): 892-901, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531102

RESUMO

Malaria eradication efforts prioritize safe and efficient vaccination strategies, although none with high-level efficacy against malaria infection are yet available. Among several vaccine candidates, Sanaria® PfSPZ Vaccine and Sanaria PfSPZ-CVac are, respectively, live radiation- and chemo-attenuated sporozoite vaccines designed to prevent infection with Plasmodium falciparum, the leading cause of malaria-related morbidity and mortality. We are conducting a randomized normal saline placebo-controlled trial called IDSPZV1 that will analyze the safety, tolerability, immunogenicity, and efficacy of PfSPZ Vaccine and PfSPZ-CVac administered pre-deployment to malaria-naive Indonesian soldiers assigned to temporary duties in a high malaria transmission area. We describe the manifold challenges of enrolling and immunizing 345 soldier participants at their home base in western Indonesia before their nearly 6,000-km voyage to eastern Indonesia, where they are being monitored for incident P. falciparum and Plasmodium vivax malaria cases during 9 months of exposure. The unique regulatory, ethical, and operational complexities of this trial demonstrate the importance of thorough planning, frequent communication, and close follow-up with stakeholders. Effective engagement with the military community and the ability to adapt to unanticipated events have proven key to the success of this trial.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Militares , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Vacinas Antimaláricas/administração & dosagem , Indonésia/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Esporozoítos/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Plasmodium falciparum/imunologia , Malária Vivax/prevenção & controle , Malária Vivax/epidemiologia , Masculino , Adulto , Adulto Jovem , Plasmodium vivax/imunologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA